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Bose-Einstein condensation of a quantum group boson gas
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We study the Bose-Einstein condensation of a gas wit(3Jsymmetry. We show, in the thermodynamic
limit, that the boson interactions introduced by the quantum group symmetries enhance Bose-Einstein conden-
sation giving a discontinuity in the heat capadity at the critical temperatur€. . The critical temperature and
the gap inC, increase with the value of the parametgrand become approximately constant fipr-3.
[S1063-651%98)03001-3

PACS numbegs): 05.30—d

I. INTRODUCTION considered here, questions regarding the possible relevance
of quantum groups in a thermodynamic system can be an-
The search for new applications of quantum groupg], swered.
other than the theory of integrable models, has diversified to Our starting point is to consider the simplest quantum
several areas of theoretical physics. The literature on thigroup, SY(2), invariant Hamiltonian, and calculate the ther-
subject deals mainly with formulations to build quantum modynamic properties of the corresponding interacting bo-
group versions of the Lorentz and Poincalgebrag3], or  son gas. Our main motivation resides in finding out about the
the use of a quantum group as an internal symmetry in quarrole that these interactions, which result from the require-
tum mechanics and field theofg]. Although many of these ment of quantum group invariance, may play at low tempera-
approaches address interesting theoretical questions, they tures. It would be of much interest, in the author’s opinion, if
general remain at a formalism level, with the quantum groughese interactions could fit energy related data obtained from
parameteq playing merely the role of a deformation param- the experiments.
eter. As is well known, in the quantum inverse scattering In experimental settings, trapping potentials are well ap-
method and vertex models, the parameteicquires a physi- proximated by the potential of a harmonic oscillator. A non-
cal meaning through its relation with Planck’s constant andnteracting Bose gas in a harmonic potenfié]l is known to
the anisotropy of the lattice, respectively. In order to look forexhibit a discontinuity in the heat capacity. This discontinu-
the physical role thad could play in other areas of physics, ity is, however, considerably larger than the one reported in
in previous paper§5,6] we began a study of the thermody- a recent experiment involving a dilute gas ¥Rb [8]. In
namic properties of quantum group gases, which are thaddition, introducing two-particle interactions has the effect
guantum group fermiofQGP and quantum group boson [9], for the case of a harmonic oscillator potential, of making
(QGB) models. These models can be interpreted as eithghe heat capacity continuous, and therefore less agreeable
fermion or boson gases with interactions fixed by the quanwith Ref.[8]. Therefore, it is natural to consider whether the
tum group. For reasons of simplicity, we considered for bothboson interactions, required by the quantum group invari-
cases the simplest §{2) invariant Hamiltonian. In particu- ance of the Hamiltonian, give a thermodynamic behavior that
lar, the QGB model has the interesting property that in twocould fit this and other experimental data. In addition, we
and three spatial dimensions the paramefeinterpolates expect these interactions to be weak, and a good agreement
within a wide range of attractive and repulsive systems in-should occur for values of| close to the standard value
cluding the free boson and fermion cases. Therefore, the def=1.
parture from the valug=1, which at the mathematical level In this paper, as a first step, we study the QGB model with
implies the noncommutativity of quantum group matrix ele-no external potential. An obvious question to address is un-
ments, gives in a simple thermodynamic model, an alternader which conditions the QGB model exhibits Bose-Einstein
tive approach to fractional statistics. condensatiolBEC). Under these conditions, what is the be-
This work is a study on the implications of introducing havior of the internal energy and heat capacity at the critical
guantum group symmetries in a thermodynamic system aemperaturd ., and what is the dependence, if any,Tgfon
low temperatures, with particular emphasis in the phenomeg? In this paper we answer those questions by analyzing the
enon of Bose-Einstein condensation. There is, at present, How temperature behavior of the QGB model with %)
direct indication that quantum group symmetries are realizegymmetry.
in any particular thermodynamic system. At the moment, a In Sec. Il we discuss the general formalism and redefine
guantum group gas is a mathematical model that may or magur model in terms of boson operators. A more detailed and
not explain the behavior of real gases in a particular situageneral discussion is given in R¢&]. Section Ill contains
tion. Nevertheless, by performing the kind of calculationsthe main results of the paper. We calculate the dependence of
the heat capacityC,, internal energyU, entropy S, and
equation of state on the parametgrin particular, we show
*Electronic address: ubriaco@Itp.upr.clu.edu that the boson interactions that arise from the,&) sym-
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metry of the Hamiltonian produce a discontinuily transi-

tion, in the heat capacity at the condensation temperature.

Il. SU4(2) BOSONS

The quantum group S}¢2) consists of the set of matrices
a b
c d

with elementg[a,b,c,d} generating the algebra

T:

ab=q 'ba, ac=q lca,
bc=ch, dc=qcd,
db=gbd, da—ad=(q—q 1)bc,

detT=ad—q 'bc=1, (1)
with the unitary condition§10] a=d, b=q !c, and q
e R. Hereafter, we take €q<=. The SY(2) transforma-
tion T matrix and the correspondirfg matrix

g 0 00
o 1 00
R=l o q-qt 1 0
0O 0 0 q

satisfy the algebraic relatiofd 1]

RT1T2:T2T1R (2)
and
R15R13R23= Ra3R13R1, 3

Where Tl:T®1 and T2:1®T EV®V, (R23)ijk,i’j'k’
:5ii’Rjk,j’k’ EV®V®V
We define as Si(2) bosons the set of fields

{2

D,/’
satisfying the relations

D0, — q2D,P,=1, 4
© 11— QP01 D1 =1+ (07~ 1) 0,5, (5)
O,0,=qdP Py, (6)
(DZqu:qulq)Z @)

Equations(4)—(7) are covariant under the field redefini-
tions®'=Td andd®’=® T with Te SU,(2). Itis clear that
for g=1, the operators>; become ordinary bosons; .

The operatorsD;, should not be confused with the so-
called g-boson oscnlators A seta(, aT) of g bosons are
defined by the relationgl 2,13

aa'—q 'a'a=q", [a,a1=0=[a.,a] (8
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whereN|n)=n|n). Several variations of E48) are common
in the literature. By taking two sets gfbosons, as defined in
Eq. (8), it has been showfl2,14] that the operators

+

J.=ala;, J_=ala,, 2J3=N,—N; 9)

provide a realization of the quantum Lie algebrg(&):

[J5.d=]=*+J., [J-,J_]=[2Js]. (10

The main distinction between thé; operators withq
bosons is that, in contrast to Eqd)—(7), the algebraic rela-
tions in Eq.(8) are not covariant under the action of the
SU,(N) quantum group matrices. Several studies on the
thermodynamics of} bosons, and similar operators called
quons[15], have been publishdd 6,17. In particular, a sys-
tem defined by a “free” Hamiltonian in terms af oscilla-
tors has been shown to exhibit BEC8,19. Certainly, the
work devoted to the thermodynamics g@foscillators repre-
sents a test on the consequences of modifying boson com-
mutators, according to E@8) and its different versions. On
the other hand, the algebraic relations in E@s—(7), with
the model discussed in this paper, address the implications
that result of imposing quantum group invariance in a ther-
modynamic system.

The simplest Hamiltonian written in terms of the opera-
tors @, is certainly the one that becomes fgr=1 the free
boson Hamiltonian with two species. It is simply written as

HBZE

K

SK(Nl,K+N2,K)Y (11)

where[®; ,,®,, ;]=0 for k# k' andN; ,=; P, .. Fora
given k the SY,(2) bosons are written in terms of boson
operators ¢; and ¢, with usual commutation relations
[ & ,d)J] o;; as follows:

=(¢)) YN NI+, (12)
®;= g, j=1,2 (13)
leading to the interacting boson Hamiltonian
HBZE &N+ Na,}
2”‘I m
=2 F Ny Na ™, (14)

Kq—lml

whereN; . is the ordinary boson number operator and the
bracket{x} = (1—q2*)/(1—q?). The grand partition function
Zg is given by

2 2:0 e—,BsK{n-%—m}eﬁ,u,(n+m)’ (15)

which after rearrangement simplifies to the equation

[

ZB=];[ mE:O (m+1)eFedmizm

(16)

wherez=eP* is the fugacity.
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Ill. LOW TEMPERATURE BEHAVIOR 3

In this section we study the low temperatulégh den-
sity) properties of the QGB gas, which is represented by the 23
partition function in Eq(16). In particular, we will study the R )
conditions under which BEC will occur. In the thermody-
namic limit we write

InZz=In

1+ 21 (n+1)z”)

47V [ -
+—J pZn| 1+ X, (n+1)e A=z | dp,
h3 Jo n=1

17)
05 -7 T T T T r 4
where, as in the ideal Bose case, the divergence op the ' : ’ * g ¥
term asz—1 has been taken into account by splittinggin FIG. 1. The functiongyz(1,0) andgs(1,q), as defined in the

in a single term plus an integration. The series in the intetext, for 1<q<6. The value of these functions decrease from its
grand of Eq.(17) diverges forz=1 andq<1, giving in this  maximum value agj=1, and remains approximately constant for
case no transition point. For>1, the series is more conver- g>3.

gent than the ideal Bose case, and BEC is expected to occur.

The average total number of particles is given by h2 / (N) 213

T.= , 22
! (asz *~ 2K 2V oA 1) 2
Bl TV
' 20341,9)
= 23)
47V [2m\32 (= z‘f(n+1)ne-{“}xzz“ Pe z3 (
=MNo)* =515 sz f(z,q) ax,
O 1

Since forg>1 the functiongs;(1,9) <gds»(1,1), then the
(18 critical temperaturd ; for this model is larger than the criti-
cal temperaturé’ffE for the ideal Bose gas. For a given den-

where the function sity the two temperatures are related by

f(zg)=1+> (m+1)e (mx*zm l:( 2.612 2R 24
' T8 \ga(1a))
Expanding the integrand in powers pfand integrating we BE _
obtain giving then =T /T.~<2.55. For the internal enerdy we
have
(N)=(Ng) + v ﬁ "S(n,q) (19) dInZ
= 0 _3 < z n!q ’ _ - B
)\T n=1 U (7B +,(L<N>
wherent= vh%/27m ks'/l;and the coefficien®(n,q) becomes, av = S%(n+ 1){n}ef{n}x22n
for g=1, S(n,1)=2/n*“. Therefore, based on standard nota- = 3 f x4 ; dx. (25
tion we rewrite Eq(19) as Jma3g Jo (z,9)
oV Expanding the integrand in powers ofeads to the equation
(N)=(No)+ F93/2(Z,Q), (20
' U Al (2,9) (26)
=5 2 Zl L
such thagy(1,1)=¢(3/2). In theq—1 limit, Eq. (20) cor- 2 gra 95224

responds to the case of an ideal Bose gas with two species.

This model will exhibit Bose-Einstein condensation for thosewith the identificationgs;(1,1)= £(5/2).

values of the temperature or density such that Figure 1 shows a graph obtained from a numerical calcu-
lation of the functiongys»(1,9) andgs,(1,g) for 1<q<6.

X >2i (1q) 21) These functions decrease from its maximum value
T75(N) 934 L.4), 032(1,1)=2.612 andys;(1,1)=1.341 and remain practically
constant forg>3.
where the critical temperatufg. and critical densityp,. are The heat capacity is written in terms of the internal energy

given by the following equations: according to the general expression
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c _(au B
v o\dT],,
whereu'=duldT. For values of the temperature very close
to T, the chemical potentiak(T;)=0 and its derivative

' (T;)=0, and therefore if' (TS ) #0 there will be a dis-
continuity in the heat capacity according to

5U

2T

(27 ¢ a6

Cy, lhk<N>

U h
ACo=CUT) =€) =~ /(T2 2 02) - [ e
(29 ]

A simple way[9] to find ' (T7) is by first considering that
for a closed systemy(N)/dT=0, such that forT>T,,
(Ng)=0 so from Eq.(20), we obtain

T T T,

2 3

d932(2,9) FIG. 2. The heat capacit€, as a function of the temperature

T) - (29 for several values of the parametprThe gap at the condensation
z=1 temperature increases withup to a valueAC,=3.24&(N) atq=6

and remains constant for>6.

! + 3
mw(Tg)=- Ek 032(2,0)/z

At g=1 the denominator of Eq29) becomes the divergent
series=7k~ Y2 and thenAC,=0. The denominator con-

i . such that with the use of Eq22) it becomes
verges for all values ofi>1, showing that the heat capacity

exhibits a gap at the critical temperature. k( ) 312
In particular, for low temperatures such tHE& T, we C,= 1+8(a)ga(1a)| |+ (36)
have that the chemical potentja(T<T.) =0 and its deriva-
tive (du/dT) (T<T.)=0, giving for the heat capacity According to Egs(31) and(36) the gap in the heat capacity
is then given by the equation
c —15ng (1,9) (30 159:,(19) 3
v o (3 I52-H) _ s2ALd) S
Ay ACU|T—TC~k<N>(—493/2(1,q) S[1+ 5(‘1)93/2(1101)]) -
such that after inserting E@22) the heat capacity becomes (37)
9s(1,9) 312 Figure 2 shows the discontinuity of the heat capa€ity
=—k< >93/2(1CI)( (31 for different values ofq, and shows that the gap is more

sensitive to small deviations af from the ideal Bose case
The dependence of the functigr,,/gs, on q will indicate 9= 1 The gap increases with the value of the parameter

how much the behavior of the heat capacity for this modePNd remains approximately constant tpr3. Thus, in this
departs from the ideal Bose case. model, the onset of BEC becomes a second order phase tran-

In order to find the heat capacity for temperatufesT,, sition.l he chemical o
we expand the &g in powers of the fugacity. After per- . At C}W tehmperature§'<dTCH the ¢ gmlcaf potentigk =0,
forming the elementary integrations, the first few terms read'VIng for the entropy and the equation of state

v v 5KV
InZB:F(ZZ—F 46(q)Z%+--+), (32) S=gtkinZg= T%gs/z(l,Q)y (38)
T

where 8(q)=3{[3/(1+g?)%?]—(1/y2)}. Calculating the
average number of particles and reverting the equation, we
find the fugacity and the internal energy as functiongj:

p 2
Pa i N —39521.0). (39

According to Fig. 1, the entropy has the interesting property
(N))\%/ 2035(q)(N) that for a given temperatufB<T. it acquires its maximum
oy \ - Vi Tl (33  value atq=1. This same feature was also found at low tem-
peratures for the case of a quantum group fermion[§as
3<N>/ )\%(qu) ) Then, the interactions introduced by the (%) symmetry
+ cee

= 25 | - v (39 are such that they decrease the entropy below the one corre-

sponding to the standard cage- 1.
The heat capacity is then given by V. CONCLUSIONS

:3k<N>{ 14 7\$5(Q)<N> g (35) In this paper we studied the low temperature behavior of a
v 2\ 2V ' quantum group gas with §(2) symmetry in the thermody-
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namic limit. Our results indicate that the boson interactionsgn the heat capacity of a dilute gas ¥Rb atoms, as reported
introduced by the quantum symmetry are such that this sydn Ref.[8], although a realistic comparison with experimen-
tem exhibits Bose-Einstein condensation dor 1. tal results requires one to consider, in addition, an external
The interaction terms are fixed by the quantum symmetrharmonic potential and the corrections due to a small number
of the Hamiltonian, which are the valued and q of  (=~20000) of particles. Another interesting feature of this
SUy(N). For purposes of simplicity, we sé&t=2 and ana- model is that at high temperatures amd 1.78 it behaves as
lyzed the effect of varying]. The parameteq, which in the  an interacting fermion gd$] and, on the other hand, at low
boson representation controls the strength of the interactionsemperatures ang>1 it exhibits BEC.
plays the role of increasing the condensation temperature, The system studied in this paper is described by the sim-
reducing the entropy, and producing a gap in the heat capagiest quantum group invariant Hamiltonian, and the calcula-
ity at the onset of the BEC. Our results are written in termstions were made in the thermodynamic limit and with no
of the functionsgs,(1,0) and gs;(1,q) introduced in the external potential. Some recent studies for the case of an
text. These functions decrease rapidly from their respectiv@deal Bose gas inside a trapping potential, in the thermody-
values {(3/2) and {(5/2) atg=1, and become approxi- namic limit[9,20,21; and with a finite number of particles
mately constant fog>3. Therefore, the properties of this [22—-24 show the effect of these corrections on the conden-
model will be more sensitive to thosevalues that are small sation temperature and heat capacity. Therefore, since in our
deviations from the ideal Bose cage-1. A simple numeri-  case, the interactions are fixed by the &) symmetry of
cal check shows that the critical temperature fide, the Hamiltonian, a natural continuation of our work will be
T.~2.20 K, corresponds tg=1.02. Even more interesting to include those corrections such that a more direct compari-
is the fact that the same valge= 1.02 fits very well the gap son to experimental results can be made.

[1] See, for exampleyang-Baxter Equation in Integrable Systems [13] L. C. Biedenharn, J. Phys. 22, L873(1989.
edited by M. Jimbo, Advanced Series in Mathematical Physic§14] Y. J. Ng, J. Phys. 23, 1203(1990.

Vol. 10 (World Scientific, Singapore, 1990 [15] O. W. Greenberg, Phys. Rev. Le®4, 705(1990; Phys. Lett.
[2] V. Chari and A. PressleyA Guide to Quantum Group€am- A 209, 137(1995.
bridge University Press, New York, 1994 [16] M. Martin-Delgado, J. Phys. &4, L1285(1991); I. Lutzenko

[3] See, for example, U. Carow-Watamura, M. Schliekgr, M. and A. Zhedanov, Phys. Rev. 3, 97 (1994; P. Angelopou-
Scholl, and S. thamura, Z. Phys48, 150(19903 0. Ogie- lou, S. Baskoutas, L. de Falco, A. Jannussis, R. Mignani, and
vetsky, W. Schmidke, J. Wess, and B. Zumino, Int. J. Mod. A. Sotiropoulou, J. Phys. &7, L605(1994); S. Vokos and C.
Phys. ,A6’ 3081(1990. ) Zachos, Mod. Phys. Lett. B, 1 (1994; J. Goodison and D.

[4] I. Aref'eva and |. Volovich, Phys. Lett. B64, 62 (1991); A. Toms, Phys. Lett. AL95, 38 (1994: 198 471(1995; M. R-
Kerppf, J. Math. Phys35, 4483(1994; T. Brzezmskl_ and S. Monteiro, |. Roditi, and L. Rodrigues, Mod. Phys. Lett.B
Majid, Phys. Lett. B298 339 (1993; L. Castellani, Mod. 607 (1995

(Plgfé_Lle(;t'ﬁ;\;{égflz;l;g;”;1';"2';:1'932_'1"05'&%‘;' 2P2h138 [17] D. Fivel, Phys. Rev. Leti65, 3361(1990. R. Campos, Phys.
oy T T Y, FIys. Lett. A 184, 173(1994; S. Dalton and A. Inomata, Phys. Lett.

Lett. B 375 75(1996.

[5] M. R. Ubriaco, Phys. Lett. A219, 205 (1996; Mod. Phys. A 199 315(1995. A. Inomata, Phys. Rev. A2 932(1995.
Lett. A 11, 2325(1996. [18] Gang Su and Mo-lin Ge, Phys. Lett. 273 17 (1993; M.

[6] M. R. Ubriaco, Phys. Rev. B5, 291 (1997. R-Monte’iro, I. Roditi, and L. Rodrigueshid. 188 11 (1994).

[7] S. R. de Groot, G. Hooyman, and C. ten Seldam, Proc. R. Sod19] J- Tuszyski, J. Rubin, J. Meyer, and M. Kibler, Phys. Lett. A
London, Ser. A203 266 (1950). 175 173(1993; M. Salerno, Phys. Rev. BO, 4528(1994.

[8] J. Ensher, D. Jin, M. Matthews, C. Wieman, and E. Cornell,[20] V. Bagnato and D. Kleppner, Phys. Rev.44, 7439(1991.
Phys. Rev. Lett77, 4984(1996. [21] H. Haugerud and F. Ravndal, e-print cond-mat/ 9509041.

[9] V. Bagnato, D. Pritchard, and D. Kleppner, Phys. Rev33\  [22] S. Grossmann and M. Holthaus, Z. Naturforsch. TeBG)323
4354 (1987. (1999; 50, 921 (1995; Phys. Lett. A208 188 (1995; W.

[10] S. Vokos, B. Zumino, and J. Wes§ymmetry in Nature Ketterle and N. J. van Druten, Phys. Rev5A, 656 (1996.

(Scuola Normale Superiore Publications, Pisa, Italy, 1989  [23] W. Mullin, e-print cond-mat/9610005.

[11] L. A. Takhatajan, Adv. Stud. Pure Mati9, 1 (1989, and  [24] H. Haugerud, T. Haugset, and F. Ravndal, e-print cond-mat/
references therein. 9605100.

[12] A. J. Macfarlane, J. Phys. 82, 4581(1989.



