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Bose-Einstein condensation of a quantum group boson gas

Marcelo R. Ubriaco*
Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico,

P.O. Box 23343, Rı´o Piedras, Puerto Rico 00931-3343
~Received 1 April 1997!

We study the Bose-Einstein condensation of a gas with SUq(2) symmetry. We show, in the thermodynamic
limit, that the boson interactions introduced by the quantum group symmetries enhance Bose-Einstein conden-
sation giving a discontinuity in the heat capacityCv at the critical temperatureTc . The critical temperature and
the gap inCv increase with the value of the parameterq and become approximately constant forq.3.
@S1063-651X~98!03001-3#
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I. INTRODUCTION

The search for new applications of quantum groups@1,2#,
other than the theory of integrable models, has diversifie
several areas of theoretical physics. The literature on
subject deals mainly with formulations to build quantu
group versions of the Lorentz and Poincare´ algebras@3#, or
the use of a quantum group as an internal symmetry in qu
tum mechanics and field theory@4#. Although many of these
approaches address interesting theoretical questions, th
general remain at a formalism level, with the quantum gro
parameterq playing merely the role of a deformation param
eter. As is well known, in the quantum inverse scatter
method and vertex models, the parameterq acquires a physi-
cal meaning through its relation with Planck’s constant a
the anisotropy of the lattice, respectively. In order to look
the physical role thatq could play in other areas of physic
in previous papers@5,6# we began a study of the thermod
namic properties of quantum group gases, which are
quantum group fermion~QGF! and quantum group boso
~QGB! models. These models can be interpreted as ei
fermion or boson gases with interactions fixed by the qu
tum group. For reasons of simplicity, we considered for b
cases the simplest SUq(2) invariant Hamiltonian. In particu-
lar, the QGB model has the interesting property that in t
and three spatial dimensions the parameterq interpolates
within a wide range of attractive and repulsive systems
cluding the free boson and fermion cases. Therefore, the
parture from the valueq51, which at the mathematical leve
implies the noncommutativity of quantum group matrix e
ments, gives in a simple thermodynamic model, an alter
tive approach to fractional statistics.

This work is a study on the implications of introducin
quantum group symmetries in a thermodynamic system
low temperatures, with particular emphasis in the pheno
enon of Bose-Einstein condensation. There is, at presen
direct indication that quantum group symmetries are reali
in any particular thermodynamic system. At the momen
quantum group gas is a mathematical model that may or
not explain the behavior of real gases in a particular sit
tion. Nevertheless, by performing the kind of calculatio
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considered here, questions regarding the possible relev
of quantum groups in a thermodynamic system can be
swered.

Our starting point is to consider the simplest quantu
group, SUq(2), invariant Hamiltonian, and calculate the the
modynamic properties of the corresponding interacting
son gas. Our main motivation resides in finding out about
role that these interactions, which result from the requi
ment of quantum group invariance, may play at low tempe
tures. It would be of much interest, in the author’s opinion
these interactions could fit energy related data obtained f
the experiments.

In experimental settings, trapping potentials are well a
proximated by the potential of a harmonic oscillator. A no
interacting Bose gas in a harmonic potential@7# is known to
exhibit a discontinuity in the heat capacity. This discontin
ity is, however, considerably larger than the one reported
a recent experiment involving a dilute gas of87Rb @8#. In
addition, introducing two-particle interactions has the effe
@9#, for the case of a harmonic oscillator potential, of maki
the heat capacity continuous, and therefore less agree
with Ref. @8#. Therefore, it is natural to consider whether t
boson interactions, required by the quantum group inv
ance of the Hamiltonian, give a thermodynamic behavior t
could fit this and other experimental data. In addition,
expect these interactions to be weak, and a good agree
should occur for values ofq close to the standard valu
q51.

In this paper, as a first step, we study the QGB model w
no external potential. An obvious question to address is
der which conditions the QGB model exhibits Bose-Einst
condensation~BEC!. Under these conditions, what is the b
havior of the internal energy and heat capacity at the crit
temperatureTc , and what is the dependence, if any, ofTc on
q? In this paper we answer those questions by analyzing
low temperature behavior of the QGB model with SUq(2)
symmetry.

In Sec. II we discuss the general formalism and redefi
our model in terms of boson operators. A more detailed a
general discussion is given in Ref.@6#. Section III contains
the main results of the paper. We calculate the dependenc
the heat capacityCv , internal energyU, entropy S, and
equation of state on the parameterq. In particular, we show
that the boson interactions that arise from the SUq(2) sym-
179 © 1998 The American Physical Society
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180 57MARCELO R. UBRIACO
metry of the Hamiltonian produce a discontinuity,l transi-
tion, in the heat capacity at the condensation temperatur

II. SUq„2… BOSONS

The quantum group SUq(2) consists of the set of matrice

T5S a b

c dD
with elements$a,b,c,d% generating the algebra

ab5q21ba, ac5q21ca,

bc5cb, dc5qcd,

db5qbd, da2ad5~q2q21!bc,

detqT[ad2q21bc51, ~1!

with the unitary conditions@10# ā5d, b̄5q21c, and q
PR. Hereafter, we take 0<q,`. The SUq(2) transforma-
tion T matrix and the correspondingR matrix

R5S q 0 0 0

0 1 0 0

0 q2q21 1 0

0 0 0 q

D
satisfy the algebraic relations@11#

RT1T25T2T1R ~2!

and

R12R13R235R23R13R12, ~3!

where T15T^ 1 and T251^ T PV^ V, (R23) i jk ,i 8 j 8k8
5d i i 8Rjk, j 8k8PV^ V^ V.

We define as SUq(2) bosons the set of fields

F5S F1

F2
D ,

satisfying the relations

F2F̄22q2F̄2F251, ~4!

F1F̄12q2F̄1F1511~q221!F̄2F2 , ~5!

F2F15qF1F2 , ~6!

F2F̄15qF̄1F2 . ~7!

Equations~4!–~7! are covariant under the field redefin
tionsF85TF andF̄85F̄ T̄ with TPSUq(2). It is clear that
for q51, the operatorsF j become ordinary bosonsf j .

The operatorsF j should not be confused with the so
called q-boson oscillators. A set (ai ,ai

†) of q bosons are
defined by the relations@12,13#

aiai
†2q21ai

†ai5qN, @ai ,aj
†#505@ai ,aj #, ~8!
.
whereNun&5nun&. Several variations of Eq.~8! are common
in the literature. By taking two sets ofq bosons, as defined in
Eq. ~8!, it has been shown@12,14# that the operators

J15a2
†a1, J25a1

†a2 , 2J35N22N1 ~9!

provide a realization of the quantum Lie algebra suq(2):

@J3 ,J6#56J6 , @J2 ,J2#5@2J3#. ~10!

The main distinction between theF j operators withq
bosons is that, in contrast to Eqs.~4!–~7!, the algebraic rela-
tions in Eq. ~8! are not covariant under the action of th
SUq(N) quantum group matrices. Several studies on
thermodynamics ofq bosons, and similar operators calle
quons@15#, have been published@16,17#. In particular, a sys-
tem defined by a ‘‘free’’ Hamiltonian in terms ofq oscilla-
tors has been shown to exhibit BEC@18,19#. Certainly, the
work devoted to the thermodynamics ofq oscillators repre-
sents a test on the consequences of modifying boson c
mutators, according to Eq.~8! and its different versions. On
the other hand, the algebraic relations in Eqs.~4!–~7!, with
the model discussed in this paper, address the implicat
that result of imposing quantum group invariance in a th
modynamic system.

The simplest Hamiltonian written in terms of the oper
tors F j is certainly the one that becomes forq51 the free
boson Hamiltonian with two species. It is simply written a

HB5(
k

«k~N1,k1N2,k!, ~11!

where@F̄i ,k ,Fk8, j #50 for kÞk8 andNi ,k5F̄i ,kF i ,k . For a
given k the SUq(2) bosons are written in terms of boso
operators f i and f i

† with usual commutation relation
@f i ,f j

†#5d i j as follows:

F j5~f j
†!21$Nj%q

Nj 11, ~12!

F̄j5f j
†qNj 11, j 51,2 ~13!

leading to the interacting boson Hamiltonian

HB5(
k

«k$N1,k1N2,k%

5(
k

«k

q221
(

m51

`
2mlnm q

m!
~N1,k1N2,k!m, ~14!

whereNi ,k is the ordinary boson number operator and t
bracket$x%5(12q2x)/(12q2). The grand partition function
ZB is given by

ZB5)
k

(
n50

`

(
m50

`

e2b«k$n1m%ebm~n1m!, ~15!

which after rearrangement simplifies to the equation

ZB5)
k

(
m50

`

~m11!e2b«k$m%zm, ~16!

wherez5ebm is the fugacity.
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III. LOW TEMPERATURE BEHAVIOR

In this section we study the low temperature~high den-
sity! properties of the QGB gas, which is represented by
partition function in Eq.~16!. In particular, we will study the
conditions under which BEC will occur. In the thermod
namic limit we write

lnZB5 lnS 11 (
n51

`

~n11!znD
1

4pV

h3 E
0

`

p2lnS 11 (
n51

`

~n11!e2b$n%«znD dp,

~17!

where, as in the ideal Bose case, the divergence of thep50
term asz→1 has been taken into account by splitting lnZB
in a single term plus an integration. The series in the in
grand of Eq.~17! diverges forz51 andq,1, giving in this
case no transition point. Forq.1, the series is more conve
gent than the ideal Bose case, and BEC is expected to o
The average total number of particles is given by

^N&5
1

b S ] lnZB

]m D
T,V

5^N0&1
4pV

h3 S 2m

b D 3/2E
0

`

x2
(1

`~n11!ne2$n%x2
zn

f ~z,q!
dx,

~18!

where the function

f ~z,q!511(
1

`

~m11!e2$m%x2
zm.

Expanding the integrand in powers ofz and integrating we
obtain

^N&5^N0&1
V

lT
3 (

n51

`

znS~n,q!, ~19!

wherelT5Ah2/2pmkTand the coefficientS(n,q) becomes,
for q51, S(n,1)52/n3/2. Therefore, based on standard no
tion we rewrite Eq.~19! as

^N&5^N0&1
2V

lT
3

g3/2~z,q!, ~20!

such thatg3/2(1,1)5z(3/2). In theq→1 limit, Eq. ~20! cor-
responds to the case of an ideal Bose gas with two spe
This model will exhibit Bose-Einstein condensation for tho
values of the temperature or density such that

lT
3 >2

V

^N&
g3/2~1,q!, ~21!

where the critical temperatureTc and critical densityrc are
given by the following equations:
e

-

ur.

-

es.

Tc5
h2

2pmkS ^N&
2Vg3/2~1,q! D

2/3

, ~22!

rc5
2g3/2~1,q!

lT
3

. ~23!

Since for q.1 the functiong3/2(1,q),g3/2(1,1), then the
critical temperatureTc for this model is larger than the criti
cal temperatureTc

BE for the ideal Bose gas. For a given de
sity the two temperatures are related by

Tc

Tc
BE

5S 2.612

g3/2~1,q! D
2/3

, ~24!

giving then 1<Tc /Tc
BE<2.55. For the internal energyU we

have

U5
2] lnZB

]b
1m^N&

5
4V

AplT
3b

E
0

`

x4
(1

`~n11!$n%e2$n%x2
zn

f ~z,q!
dx. ~25!

Expanding the integrand in powers ofz leads to the equation

U5
3

2

2V

blT
3

g5/2~z,q!, ~26!

with the identificationg5/2(1,1)5z(5/2).
Figure 1 shows a graph obtained from a numerical cal

lation of the functionsg3/2(1,q) andg5/2(1,q) for 1<q<6.
These functions decrease from its maximum va
g3/2(1,1)52.612 andg5/2(1,1)51.341 and remain practically
constant forq.3.

The heat capacity is written in terms of the internal ene
according to the general expression

FIG. 1. The functionsg3/2(1,q) andg5/2(1,q), as defined in the
text, for 1<q<6. The value of these functions decrease from
maximum value atq51, and remains approximately constant f
q.3.
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182 57MARCELO R. UBRIACO
Cv5S ]U

]T D
V

5
5

2

U

T
1S bm82

m

kT2D z
]

]z
U, ~27!

wherem85]m/]T. For values of the temperature very clo
to Tc the chemical potentialm(Tc

2)50 and its derivative
m8(Tc

2)50, and therefore ifm8(Tc
1)Þ0 there will be a dis-

continuity in the heat capacity according to

DCv5Cv~Tc
2!2Cv~Tc

1!52bm8~Tc
1!S z

]U

]z D
z51

.

~28!

A simple way@9# to find m8(Tc
1) is by first considering tha

for a closed system]^N&/]T50, such that forT.Tc ,
^N0&50 so from Eq.~20!, we obtain

m8~Tc
1!52

3

2
kS g3/2~z,q!/z

]g3/2~z,q!

]z D
z51

. ~29!

At q51 the denominator of Eq.~29! becomes the divergen
series(1

`k21/2, and thenDCv50. The denominator con
verges for all values ofq.1, showing that the heat capaci
exhibits a gap at the critical temperature.

In particular, for low temperatures such thatT,Tc we
have that the chemical potentialm(T,Tc)50 and its deriva-
tive (]m/]T) (T,Tc)50, giving for the heat capacity

Cv5
15

2

kV

lT
3

g5/2~1,q!, ~30!

such that after inserting Eq.~22! the heat capacity become

Cv5
15

4
k^N&

g5/2~1,q!

g3/2~1,q!S T

Tc
D 3/2

. ~31!

The dependence of the functiong5/2/g3/2 on q will indicate
how much the behavior of the heat capacity for this mo
departs from the ideal Bose case.

In order to find the heat capacity for temperaturesT.Tc ,
we expand the lnZB in powers of the fugacityz. After per-
forming the elementary integrations, the first few terms re

lnZB5
V

lT
3

„2z14d~q!z21•••…, ~32!

where d(q)5 1
4 $@3/(11q2)3/2#2(1/A2)%. Calculating the

average number of particles and reverting the equation,
find the fugacity and the internal energy as functions of^N&:

z5
^N&lT

3

2V S 12
2lT

3d~q!^N&
V

1••• D , ~33!

U5
3^N&
2b S 12

lT
3d~q!^N&

V
1••• D . ~34!

The heat capacity is then given by

Cv5
3k^N&

2 S 11
lT

3d~q!^N&
2V

1••• D , ~35!
l

d

e

such that with the use of Eq.~22! it becomes

Cv5
3k^N&

2 S 11d~q!g3/2~1,q!S Tc

T D 3/2

1••• D . ~36!

According to Eqs.~31! and~36! the gap in the heat capacit
is then given by the equation

DCvuT5Tc
'k^N&S 15g5/2~1,q!

4g3/2~1,q!
2

3

2
@11d~q!g3/2~1,q!# D .

~37!

Figure 2 shows the discontinuity of the heat capacityCv
for different values ofq, and shows that the gap is mor
sensitive to small deviations ofq from the ideal Bose case
q51. The gap increases with the value of the parameteq
and remains approximately constant forq.3. Thus, in this
model, the onset of BEC becomes a second order phase
sition.

At low temperaturesT,Tc , the chemical potentialm50,
giving for the entropy and the equation of state

S5
U

T
1k lnZB5

5kV

lT
3

g5/2~1,q!, ~38!

p

kT
5

2

lT
3

g5/2~1,q!. ~39!

According to Fig. 1, the entropy has the interesting prope
that for a given temperatureT,Tc it acquires its maximum
value atq51. This same feature was also found at low te
peratures for the case of a quantum group fermion gas@5#.
Then, the interactions introduced by the SUq(2) symmetry
are such that they decrease the entropy below the one c
sponding to the standard caseq51.

IV. CONCLUSIONS

In this paper we studied the low temperature behavior o
quantum group gas with SUq(2) symmetry in the thermody

FIG. 2. The heat capacityCv as a function of the temperatur
for several values of the parameterq. The gap at the condensatio
temperature increases withq up to a valueDCv53.24k^N& at q56
and remains constant forq.6.
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namic limit. Our results indicate that the boson interactio
introduced by the quantum symmetry are such that this
tem exhibits Bose-Einstein condensation forq.1.

The interaction terms are fixed by the quantum symme
of the Hamiltonian, which are the valuesN and q of
SUq(N). For purposes of simplicity, we setN52 and ana-
lyzed the effect of varyingq. The parameterq, which in the
boson representation controls the strength of the interacti
plays the role of increasing the condensation temperat
reducing the entropy, and producing a gap in the heat ca
ity at the onset of the BEC. Our results are written in ter
of the functionsg3/2(1,q) and g5/2(1,q) introduced in the
text. These functions decrease rapidly from their respec
values z(3/2) and z(5/2) at q51, and become approxi
mately constant forq.3. Therefore, the properties of th
model will be more sensitive to thoseq values that are smal
deviations from the ideal Bose caseq51. A simple numeri-
cal check shows that the critical temperature for4He,
Tc'2.20 K, corresponds toq51.02. Even more interestin
is the fact that the same valueq51.02 fits very well the gap
s
ic

M

d

o

el
s
s-

y

s,
e,
c-

s

e

in the heat capacity of a dilute gas of87Rb atoms, as reported
in Ref. @8#, although a realistic comparison with experime
tal results requires one to consider, in addition, an exte
harmonic potential and the corrections due to a small num
('20 000) of particles. Another interesting feature of th
model is that at high temperatures andq.1.78 it behaves as
an interacting fermion gas@6# and, on the other hand, at low
temperatures andq.1 it exhibits BEC.

The system studied in this paper is described by the s
plest quantum group invariant Hamiltonian, and the calcu
tions were made in the thermodynamic limit and with
external potential. Some recent studies for the case o
ideal Bose gas inside a trapping potential, in the thermo
namic limit @9,20,21#; and with a finite number of particle
@22–24# show the effect of these corrections on the cond
sation temperature and heat capacity. Therefore, since in
case, the interactions are fixed by the SUq(2) symmetry of
the Hamiltonian, a natural continuation of our work will b
to include those corrections such that a more direct comp
son to experimental results can be made.
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